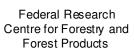
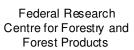
The Ecology of Timber Utilization Life Cycle Assessment Carbon Management etc.

Arno Frühwald
Department of
Wood Science and Technology
University of Hamburg, Germany





Probos Foundation
Kick off meeting CSR – Doorn 15. November 2007



Probos Foundation
Kick off meeting CSR – Doorn 15. November 2007

University of Hamburg Wood Science and Technology

Federal Research Centre for Forestry and Forest Products

Core Team: 9 Professors

6 Scientists

30 Third Party funded Scientists

50 Students p. year

185 Staff
60 Scientists
35 Third Party
Funded Sientists

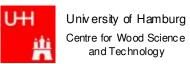
Supported by

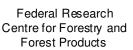
600 University Professors

1500 Scientists

of Hamburg University

2007 Award of the German Association of Prefabricated Buildings
Manufactures for R+D in Sustainable Building Production





Probos Foundation
Kick off meeting CSR – Doorn 15. November 2007

Content

- The "invention" of sustainability and the role of timber utilization
- Ecology/Sound use what does ist mean?
- Life cycle assessment an appropriate method?
- Examples for environmental friendlyness and sustainability wood based panels building products
 - wooden houses
- Carbon storage and emission reduction
- Forest sinks vs. wood product sinks
- Summary

Wood Industry Environmental Concerns - until 1990

Environmental protection was an important issue during 70's and 80's (focussing on human beings).

all industry	wood industry (specifically)
water pollution	formaldehyde
air pollution	timber preservatives (PCP,Lindane)
noise	wood dust and cancer
	destruction of tropical forests

General Environmental Concerns today

Environment is seen comprehensively

- nature which includes everything to protect
- non renewable resources
- sustainability of resources
- biodiversity
- global warming
- hazardous materials

New environmental challenges for the Forestry -Wood- Chain

- sustainable management of resources
- reduced energy consumption
- reduced Global Warming Potential
- reduced emissions to air, water, soil
- recycling of materials
- biodiversity

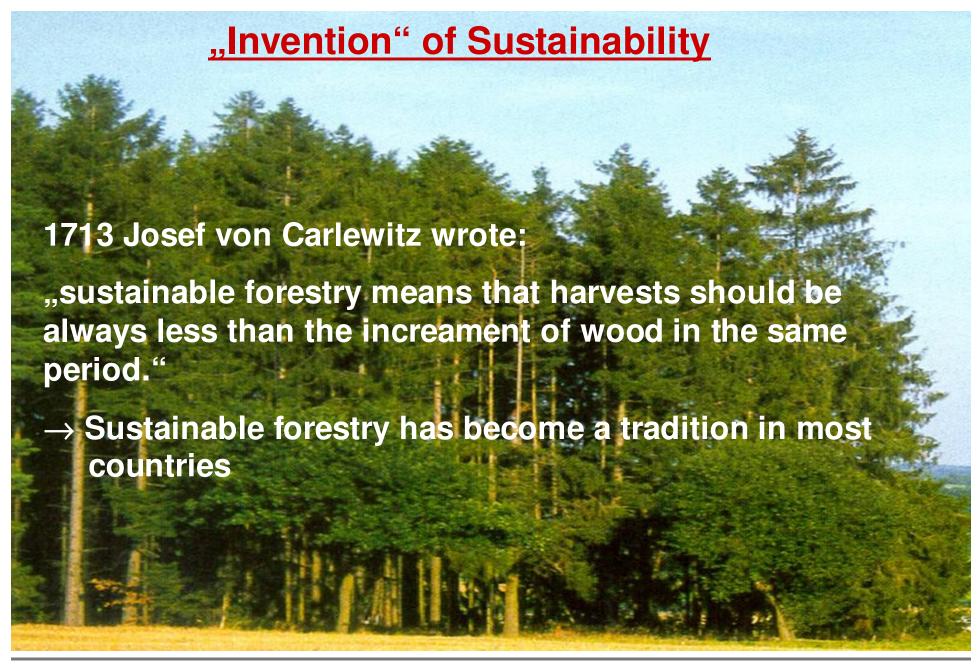
Driving forces: Rio Conference, Kyoto-Protocol

Some criterias for ecological advantages

- Sustainable supply
 - → renewable ressources
- Contribution to environment (nature)
 - → forests are "the most valuable vegetation under the aspect of biodiversity"
- Use of wood has very low impacts to the environment
 - → energy consumption
 - → emissions
- Closed carbon cycle
 - \rightarrow renewable energy
 - → closed material cycle (bio-degratation)
- Carbon sink effect (forest and wood products)

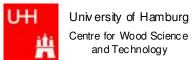
Methods to measure ecological advantages (some)

- Development of biodiversity
 - ⇒ Close to nature forests vs. managed forests ←
- Sustainability
 - \Rightarrow Close to nature \Leftarrow

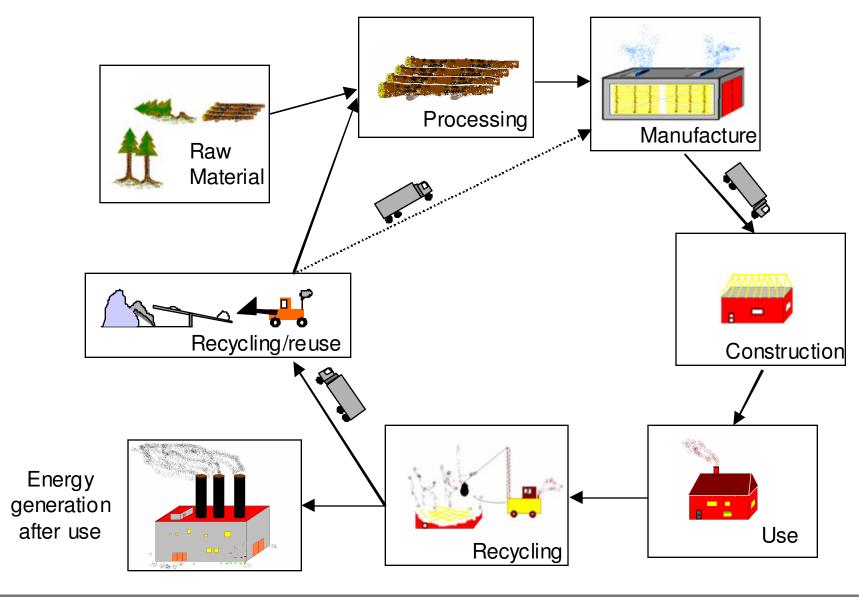

certification (FSC - PEFC)

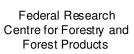
- Life Cycle Assessment
 - ⇒ Evaluates inputs and outputs and the relevant impacts to environment along the life cycle ←
- Carbon cycle aspects (carbon sequestration)
- Others: ISO 14.000

CEN TC 350 Sustainable Buildings

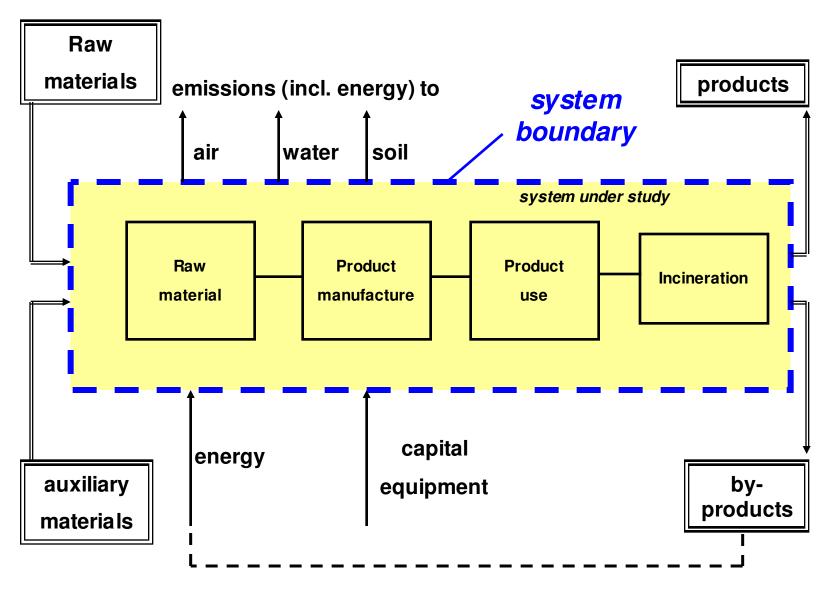

⇒ Mainly for industrial operations ←

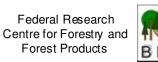
Probos Foundation


Kick off meeting CSR - Doorn 15. November 2007


The LCA-method consists of four steps

A life cycle





An inventory analysis

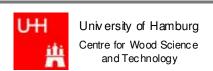
Material in- and outflow for particleboard V20 and V100

Input (kg/m³)	V 20	V100	Output (kg/m³)	V 20	V 100
round wood ¹⁾	94	87	boards ¹⁾	642	636
industrial residues 1)	471	394	water in boards	55	54
recovered wood incl. recycled boards ¹⁾	95	184			
wood total ¹⁾	660	665	total boards	697	690
water in wood	416	411	by-products(mainly sander dust)	82	105
glue (dry matter ²⁾	58	65	process water	192	225
water in glue	31	63	solid waste	2	2
process water	254	240	metals	1	1
other materials	3	3	packaging material	1	1
			emission to air (watervapor)	448	425
total	1.423	1.449	total	1.423	1.449

¹⁾ dry matter

incl. paraffine, hardener etc.

Primary energy consumption for the manufacture of particleboard


Primary energy input in MJ/m ³	V 20	V 100
fossil fuel	344	219
wood fuel		
bark	37	32
recovered wood	462	73
production residues		
 chip preparation 	519	892
- sander dust	719	908
- others	294	246
total wood	2.032	2.151
total thermal energy	2.375	2.370
electricity	1.383	1.553
transport within the mill	16	16
total energy	3.774	3.939

Material and energy for glue lam and construction solid wood for structural use

	gluelam		construction solid wood	
materials	lumber		lumber	529
. , 3	water	467	water	423
kg / m ³	oil + grease	0,2	oil + grease	0,3
	varnish	0,7	glue	0,4
	plastics	0,2	plastics	0,2
	metals	22		
	glue	14		
	total:	1.096	total:	953
energy	electricity	391	electricity	241
O,	diesel	273	diesel	216
kWh/m³	wood	518	wood	220
primary	fuel oil	36	fuel oil	11
	total:	1.218	total:	688

Impact assessment

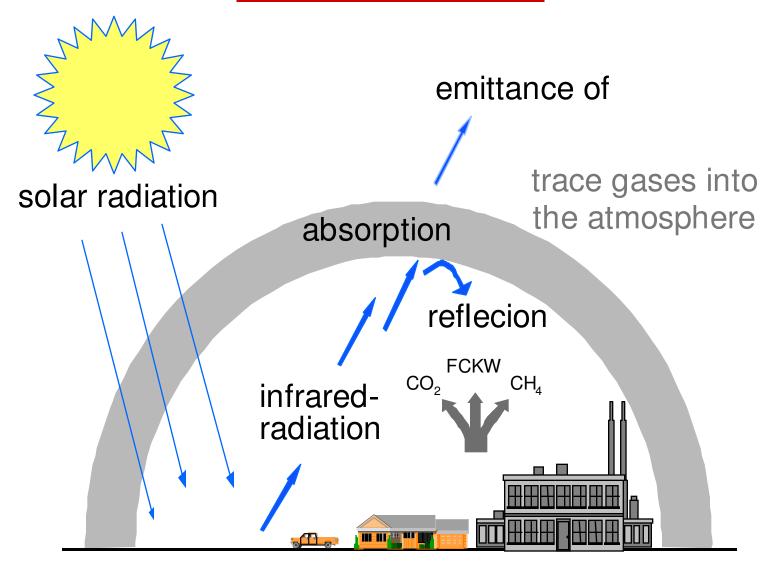
ISO/EN 14.042 recommends assessment according to various impact categories like

GWP: Global Warming Potential

EP: eutrophication

HTP: human toxicity potential

AETP: aquatic ecological toxicity potential


POCP: photochemical ozone formation potential

AC: acidification

TETP: terrestric ecological toxicity potential

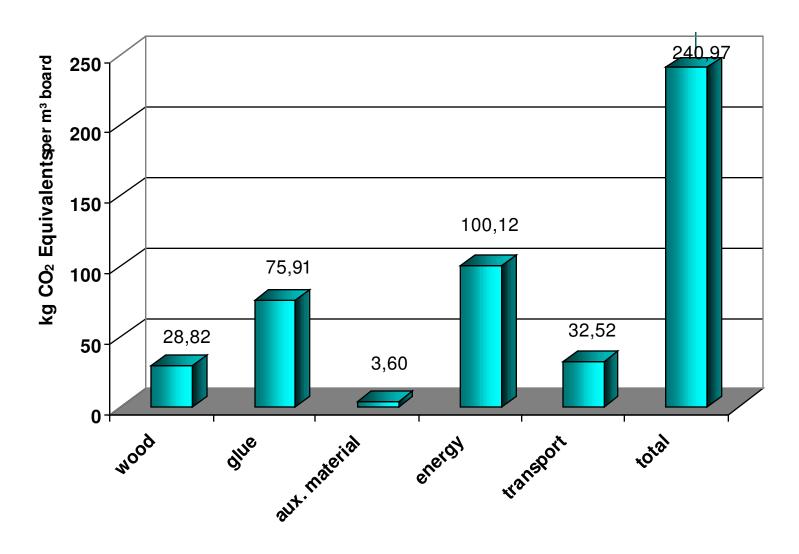
Land: land use

Greenhouse Effect

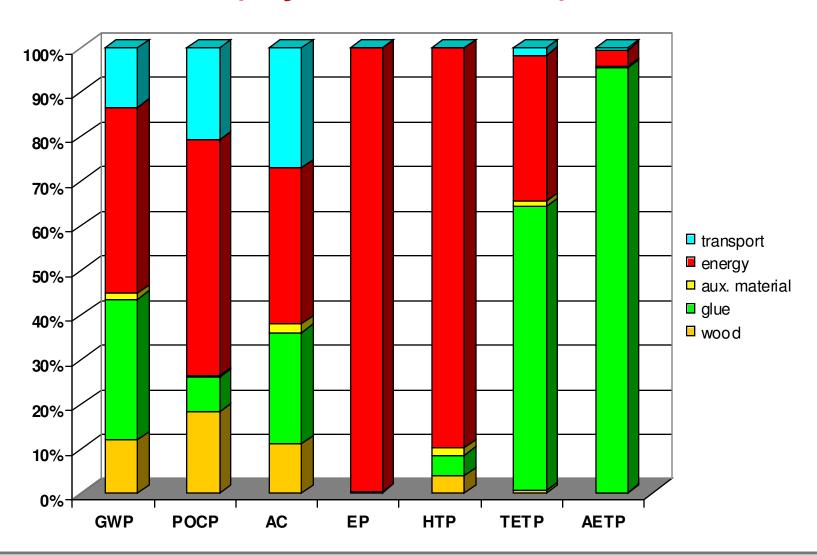
Probos Foundation

Kick off meeting CSR - Doorn 15. November 2007

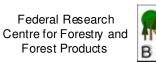
Green House Gases


chemical compound	CO ₂ -Äquivalent	
	(100 years)	
CO ₂	1	
CH ₄	24,5	
NO ₂	320	
O ₃	2000	
H1201 Halon	5600	
FCKW	1500	

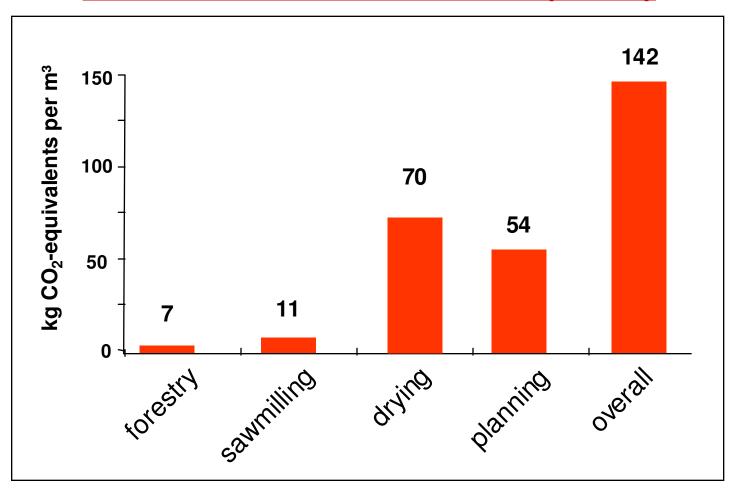
all impacts are calculated as Carbon dioxide (CO₂) or Carbon (C)

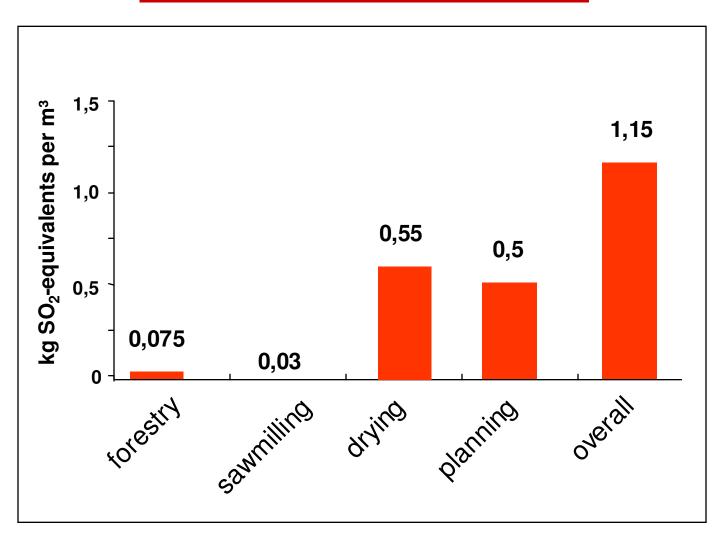


GWP Particleboard (dry condition V20)



Impact assessment categories, particleboard (dry condition V20)




Greenhouse gas emission of construction solid timber (GWP)

Fixed CO₂/m³: 925,5 kg

Acidification Potential (AP) of construction solid timber

Energy consumption vs. Energy potential

	Consumption			Energy potential in		
	Fossil fuel	Wood fuel	Electricity	residues	product	consump.
	[MJ/m³]	$[MJ/m^3]$	$[MJ/m^3]$	[MJ/m³]	[MJ/m³]	potent.
Logs	70	0	0	4.500	8.800	< 1%
Green lumber	100	5	85	4.000	8.300	1,5%
Planned dry	1.000	850	250	5.500	9.000	15%
lumber						
Glue lam	1.000	2.800	470	8.000	9.200	20%
OSB	200	3.000	470	2.200	12.900	25%

Always to Remember

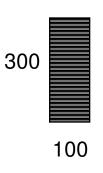
Raw material → Energy content

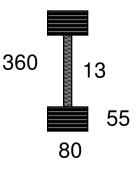
Manufacturing of Products Energy demand

Recycling ← Energy generation

Use of Products Energy Input

Example: Construction Solid Wood (dry basis) energy content


16.5MJ/kg \rightarrow minus 2.5 MJ/kg processing


14.0 MJ/kg ← Same as other material Recycling Energy based products

What other raw material basis is comparable?

Ecological aspects of beam structures

moment of inertia

22.500 cm⁴

20.000 cm⁴

17.500 cm⁴

wood volume per 10m beam

 $0,70 \text{ m}^3$

 $0,22 \text{ m}^3$

0,26 m³

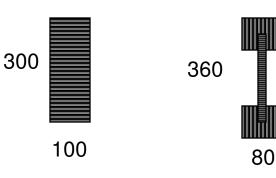
type of logs

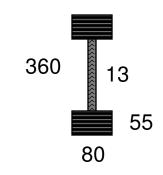
large diam.

thinnings

large d. 75%

thinn. 25%


Ecological aspects of beam structures

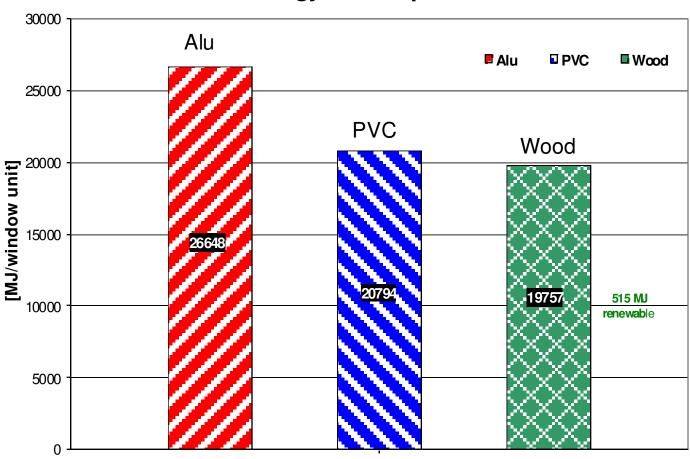

Glue Lam CSL/Parallam LVL/OSB

13

1.500 MJ

65

wood volume per 10m b	eam 0,70 m ³	0,22 m ³	$0,26 \text{ m}^3$
energy input fossil non-fossil (n. f.	1.400 MJ 57 %) 43 %	900 MJ 37 % 63 %	1.300 MJ 50 % 50 %
CO ₂ -Equiv.	33 kg	17 kg	27 kg
C-sink	150 kg	50 kg	45 kg
CO ₂ Reduction potential	210 kg	70 kg	65 kg


4.500 MJ

net energy surplus (n. f.)

900 MJ

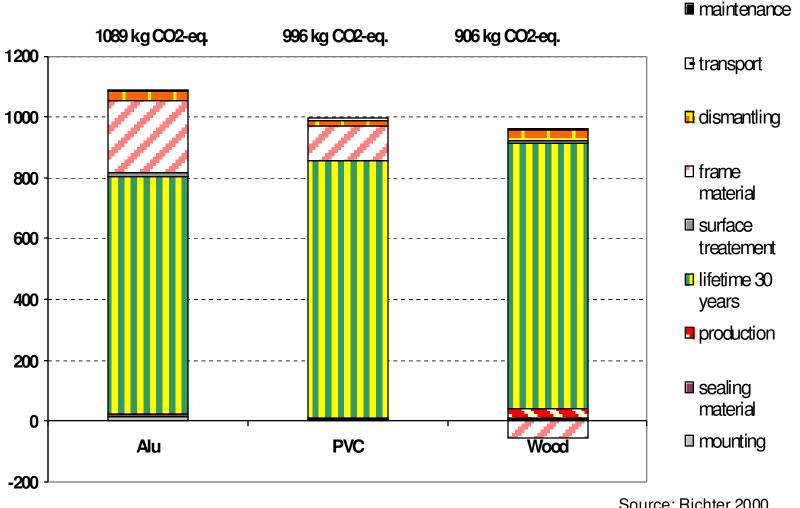
Example: Window frames

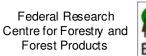
Energy Consumption

Source: Richter 2000

Example: Window frames

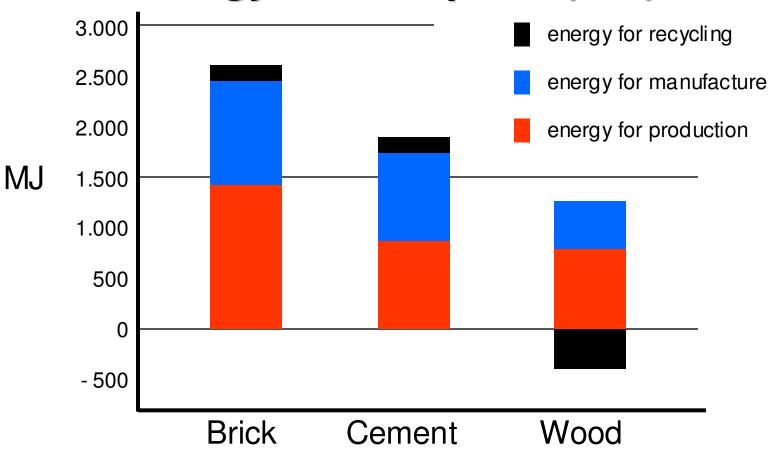
Source: Richter 2000




Example: Window frames

GWP100

Source: Richter 2000



Example: Noise protection elements

Energy consumption (PEI)

Source: Richter, Künniger, 2001

C-emissions during life cycle and C-sink

Timber Construction

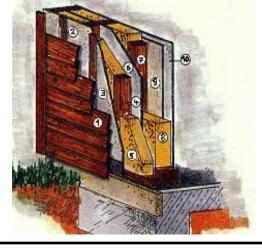
200 m² living space

C-Emissions [t]

total	82 t C	
transport	0,4	
recycling	3,3	
use (60 y)	43,7	
maintenance of house	5,5	
construction	0,6	
manufacture	28,1	

C-sink during 60 years

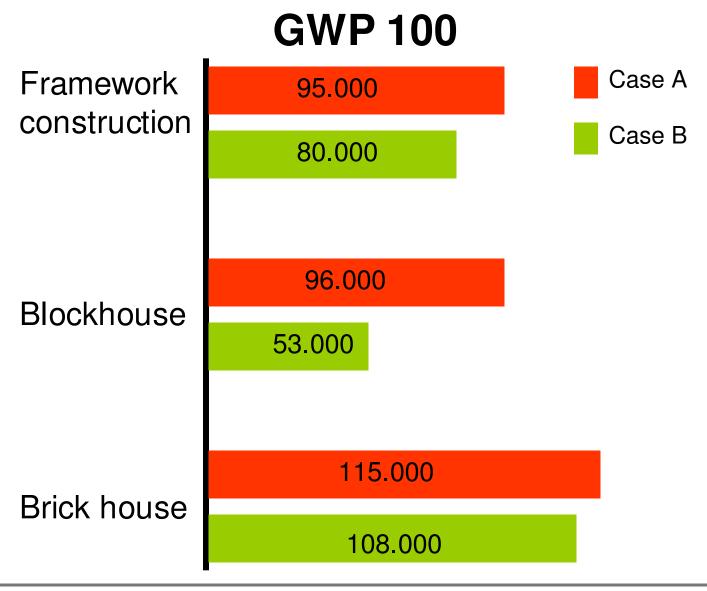
26 t C

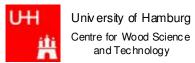

to be compared with other buildings

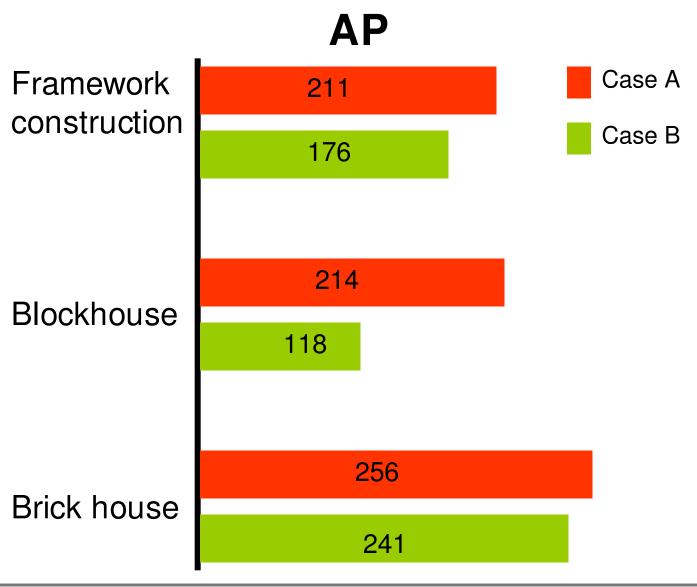
Source: Pohlmann 2002

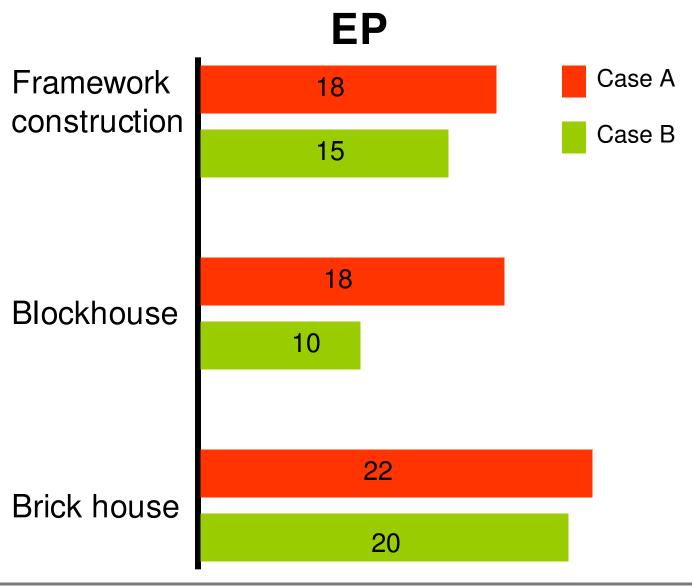
Comparison of timber and non timber products

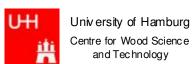
1 m² wall elements

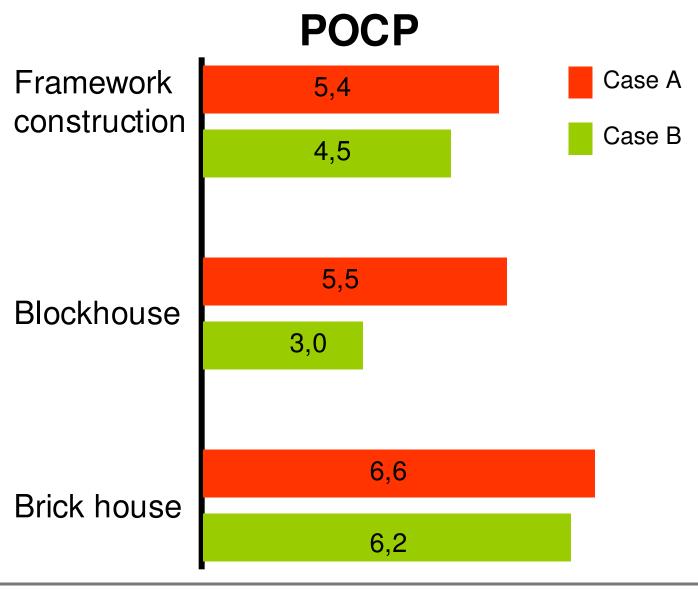

	wooden house	brick type house
weight [kg]	71	273
energy [MJ]	271	876
CO ₂ -emissions [kg]	- 50	58
acidification [kg]	128	196


Source: Waltjen, R. et al. 1999


Example: single family houses

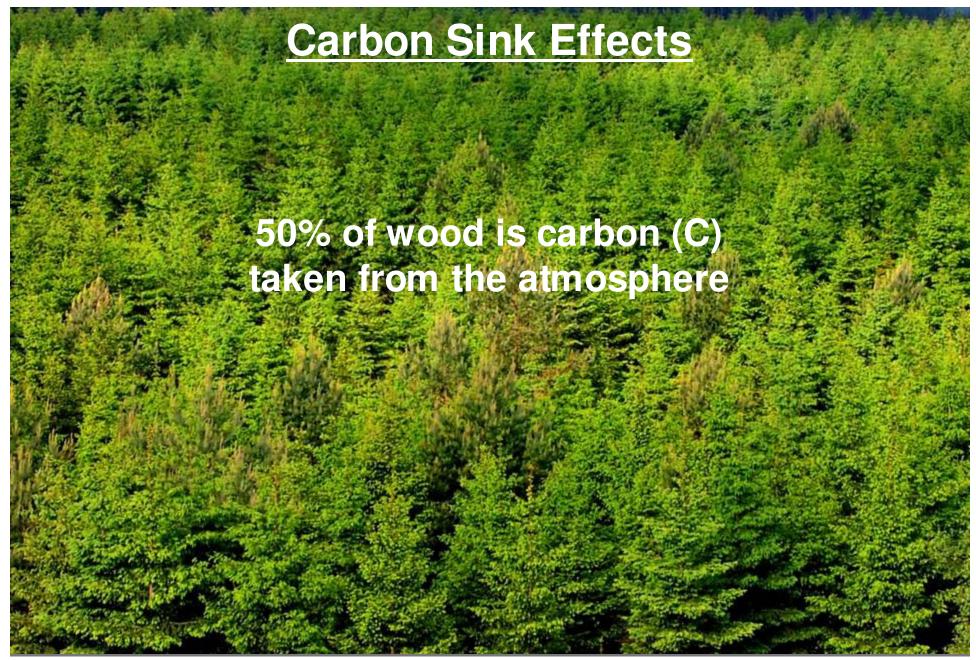




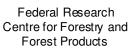


House type	Impact potential	Production	Construction
Framework house	GWP100	70100.00	24752.00
	AP	156.37	55.21
	EP	13.32	4.70
	POCP	4.03	1.42
Blockhouse	GWP100	71546.00	24752.00
	AP	159.59	55.21
	EP	13.59	4.70
	POCP	4.12	1.42
Brick house	GWP100	85277.00	29702.00
	AP	190.22	66.26
	EP	16.20	5.64
	POCP	4.91	1.71

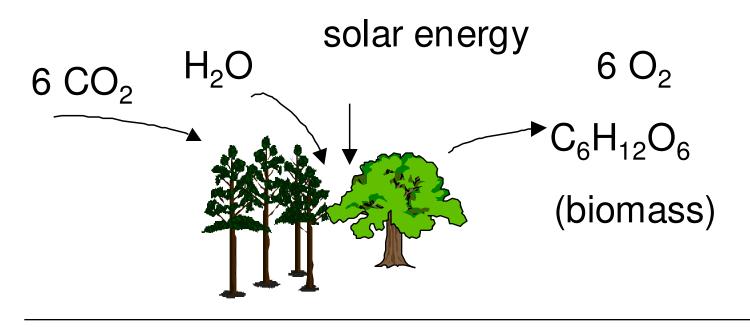
Carbon aspects of wooden houses



A wooden house compared to a brick type houses reduces C-emissions in the order of 10 t


⇒ If additional 10 % of all houses in Europe would be build with wood, the C-emissions are reduced by

1,8 Mio. t (~ 2% of all C-emissions)



Photosynthesis

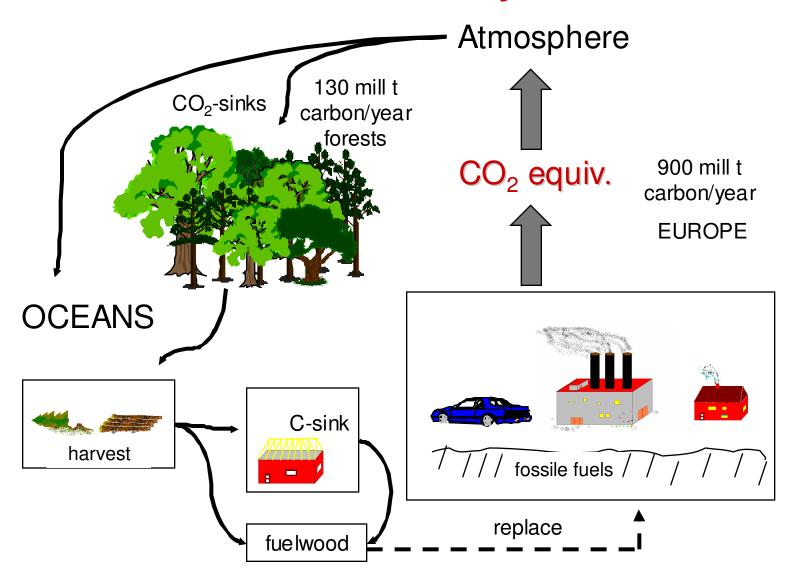
Balance for 1 kg wood

Input

1,44 kg CO₂ 0,56 kg H₂O

18,5 MJ solar energy

Output


1 kg biomass

 $1 \text{ kg } O_2$

18,5 MJ thermal use

Closed carbon cycle

Carbon sink in Forests

carbon stocks in trees and soils

of	Euro	pean	Forests

~ 20.000 Mio t C

of which

carbon stock in tree biomass

~ 8.000 Mio t C

estimated net sequestration

- in trees

~ 100 Mio t C/y

- in soils

~ 30 Mio t C/y

- total

~ 130 Mio t C/y

total carbon emission Europe

~ 900 Mio t C/y

(Source: Karjalainen et al. 2000)

Carbon sink - wood products

carbon stocks in wood products

wooden windows
 25 kg C/unit

wooden floor (parquet)
 5 kg C/m²

furniture per family
 1.000 kg C/family

roof brick type house
 1.000 - 3.000 kg C/unit

• wooden house 10.000 - 25.000 kg C/unit

estimated carbon stock in

wood products - Europe ~ 1.000 Mill t C

estimated net sequestration ~ 30 - 50 Mill t C/y

C-sink wood products - Germany

	Volume	Carbon sink		
	[Mio t]	[Mio t]		
35 Mio. houses with 2.000 kg furniture and				
wooden fitmens	70	35		
17 Mio. wooden single- and double family				
houses (25 m³ each)	255	128		
2,75 Mio. residential buildings with more than				
two appartments, used wood 40 m ³	85	43		
Wood in exterior use	80	40		
Wood in non-residential buildings	100	50		
Wood as packaging material	10	5		
Paper products	50	25		
Semifinished products -				
production and storage	15	8		
together	665	334		
per capita	8	4		

Expansion of German values to European sink

Germany 80 Mio people - 334 Mio C-sink in

wood/paper products

EU (15) 375 Mio people

1.565 Mio C-sinks in wood products

remarks:

- building sector is different within EU regarding wooden buildings (North South)
- other wood utilization sectors differ much within the EU

Total carbon Emission Europe 900 Mio t/y

C-sink in wood products EU (15)

Estimates based on German situation:

total C-sink 1.565 Mio t

net sequestration 13 - 16 Mio t/y

Total C-emissions ~ 900 Mio t/y

in % of

total reduction emissions obligation

C-sink in wood products 3,5 - 4,5 % 40 - 50 %

C-sink in forests 14 % 130 %

Average life time of wood products - Germany

Results from inquires and field research:

newspaper	0,2 years		
magazines	0,5 years		
books	25 years		

packaging furniture

low price	10	years
-----------	----	-------

high price 30 years

outdoor uses 15 years

buildings

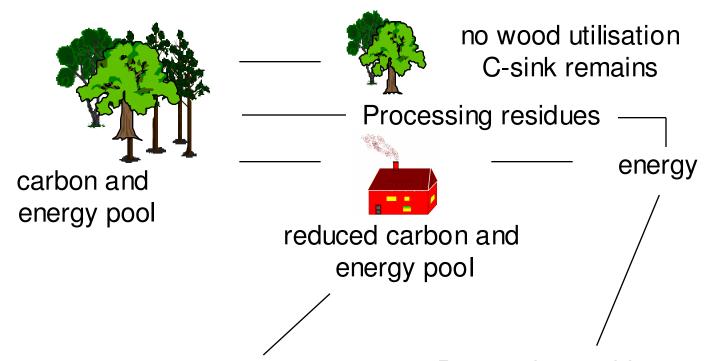

decoration 30 years

structural use 75 years

average 33 years (weighed by volume)

years

Substitution effects


In general:

If wood products substitute non wood based products less fossil energy is required because of:

- wood based products require less energy for manufacture
- processing residues and products after use are a source for energy

Substitution effects reduce fossil fuel consumption and therefore have a direct influence on GHG emission reduction ("100% Kyoto-Protocol")

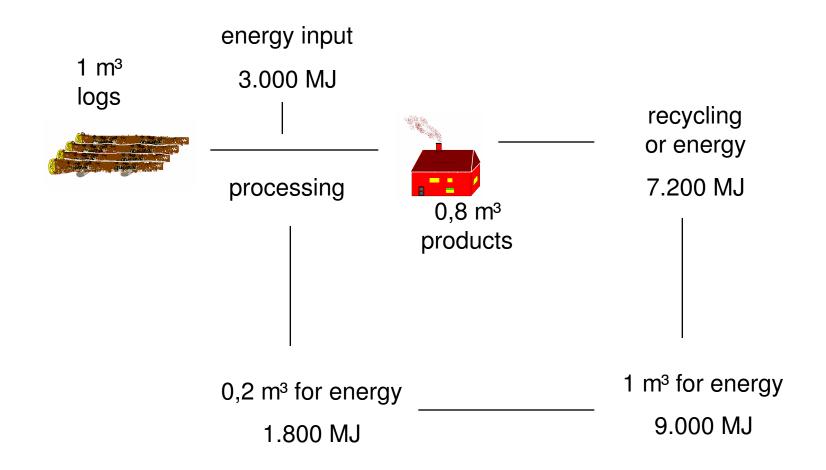
Substitution effects

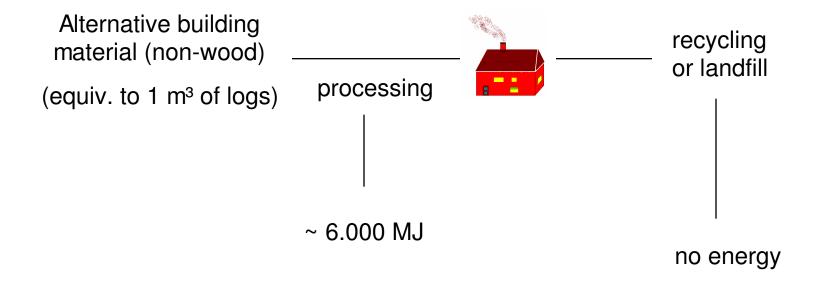
timber products replace non-timber products

energetic comparison (production energy)

Substitution of material

Processing residues and wood products after use replace fossil energy


Substitution of fossil fuels


Energy aspects of wooden products

$\Delta = 6.000 \text{ MJ/m}^3 \text{ energy surplus}$

Energy aspects of non-wooden products

 $\Delta = 6.000 \text{ MJ/m}^3$ energy consumption

Summary comparison wood - non wood system

a) from wood system 6.000 MJ/m³ logs surplus energy

(to replace fossil energy)

b) from non wood systems 6.000 MJ/m³ logs equivalent input

(fossil energy)

Wood system replaces 12.000 MJ/m³ logs fossil energy

=> equivalent to 1,10 t CO₂ or 0,30 t C emitted into atmosphere

Compared to storage in the forest

1 m³ is equivalent to ~ 0,25 t C or 0,90 t CO₂

The consequences: use more wood

- first to produce products
- second to produce energy

C-storage in products and in forests (above ground)

0,25 t C per m³ wood

C-substitution

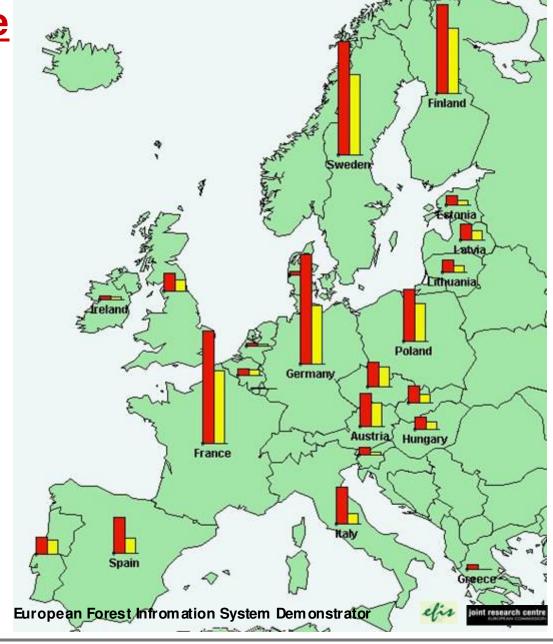
0,30 t C per m³ wood

Reduction of emissions!

Timber cuttings in Europe (EU 15) 251 Mio m³/y 20 % increase 50 Mio m³/y

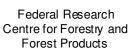
⇒ C-emission reduction 12,5 Mio t C/y 1,4 % of all emissions

Do we have enough wood to increase utilization?


Example Europe

Net annnual increment > fellings

EU 15 (mill m³): 483 ⇔ 302


Additional 10 EU states (mill m³): 125 ⇔ 81

Source: UNECE/FAO, 2000; no data for Greece, Luxembourg and Malta)

Conclusions

- Forest and long life timber products are important carbon sinks
- 2. Wood products require little energy for manufacture
- 3. More than 75% of the required energy is produced from wood residues and recovered wood
- 4. Wood and wood products after use are important energy sources
- 5. Alternative non-wood based products require more energy for manufacture
- 6. 1 m³ of round wood used in building sector can reduce the CO₂ emission from fossil fuels up to 1,25 tons; the total CO₂ reduction potential by using wood ist up to 300 Mill. tons of CO₂ per year in Europe, 15-20% of all CO₂-Emissions in Europe
- 7. For environmental reasons: use more wood!
- 8. There is enough wood!

Good for our environment

